227 research outputs found

    The role of small specimen creep testing within a life assessment framework for high temperature power plant

    Get PDF
    The safe operation of components operating at high temperature and pressure faces numerous challenges associated with ageing materials and maintaining commercial viability whilst economies transition to a lower carbon future as part of their climate change commitments. Due to these challenges the plant operator faces increasing pressure to ensure that any capital or operational expenditures are optimised and must ensure that they duly recognise plant age, condition, operating regime and ultimately the planned closure date. This review, for the first time, describes how small specimen creep testing can be applied within a practical and deployable life assessment framework and in conjunction with other assessment techniques. The current state of the art for small specimen creep testing is critically reviewed; this also includes a review of traditional techniques used on site for the metallurgical assessment of material condition, with examples from site investigations and assessment campaigns in both conventional and nuclear plant applications. In order to enhance the current practice for assessing the condition of creep ageing components this review proposes the more proactive use of small specimen testing methods for the in-service condition assessment of power plant materials, notably earlier in the plant lifecycle and within a holistic life assessment framework. This is intended to provide a means of calibrating the time dependent response of the component or system being monitored, thereby providing a key reference in-service strain rate measurement, or material property evaluation, that can subsequently be used with other traditionally deployed assessment methods to define a more targeted and cost-effective forward inspection plan. The review describes how small specimen creep testing methods and other complementary tools can be use in a new and structured approach to life management. The current status of small specimen testing methods, for both conventional and nuclear applications, is described along with a detailed discussion on current practice for in-service creep life assessment, with a case study used to illustrate the main principals. A case study is presented for ageing CMV (0.5%Cr0.5%Mo0.25%V) main steam pipework due to the extensive amount of through life data available, which highlights the particular challenges associated with the interpretation of various types of site outage inspection data, in conjunction with on-load plant operational data. The current approach to the assessment of component condition follows well established inspection based practices defined in various industry good practice guides, with expert elicitation and experience used to judge the condition of the component, system and operational risk on return to service. This review proposes a new approach to the holistic life assessment of high temperature plant, with a particular emphasis on more proactive use of small specimen testing. In addition, the review has highlighted other aspects of the current approach to in-service condition assessment that could be improved to support the plant owner. This specifically refers to the potential to develop and implement novel life assessment models that can take advantage of the significant amount of site data currently routinely acquired during plant outage overhauls. There is a clear need to provide the plant owner with more reliable and effective life prediction tools, based on earlier and more rigorous assessment of life consumption. The proposed application of small specimen testing described in this paper is equally applicable to both conventional and nuclear plant applications and a range of components, from static pressure systems to high temperature turbine rotors

    Integrated Care for Chronic Diseases – State of the Art

    Get PDF
    Chronic diseases represent a high cost for healthcare systems, for individuals, families, businesses and governments. The World Health Organization (WHO) estimates that an increase of 10% of chronic diseases is associated with a reduction of 0.5% of annual economic growth. Primary care has proven to ensure high levels of efficiency, effectiveness, equity, safety, timely and centrality of the patient achieving better health outcomes and lower costs. The Chronic Care Model (CCM) proposes a proactive approach in assisting the empowerment of patients and their community. The CCM contributes to improving the quality of care and health outcomes and the reduction of inequalities (e.g., ethnicity, social status) too

    Fast solitons on star graphs

    Full text link
    We define the Schr\"odinger equation with focusing, cubic nonlinearity on one-vertex graphs. We prove global well-posedness in the energy domain and conservation laws for some self-adjoint boundary conditions at the vertex, i.e. Kirchhoff boundary condition and the so called δ\delta and δ\delta' boundary conditions. Moreover, in the same setting we study the collision of a fast solitary wave with the vertex and we show that it splits in reflected and transmitted components. The outgoing waves preserve a soliton character over a time which depends on the logarithm of the velocity of the ingoing solitary wave. Over the same timescale the reflection and transmission coefficients of the outgoing waves coincide with the corresponding coefficients of the linear problem. In the analysis of the problem we follow ideas borrowed from the seminal paper \cite{[HMZ07]} about scattering of fast solitons by a delta interaction on the line, by Holmer, Marzuola and Zworski; the present paper represents an extension of their work to the case of graphs and, as a byproduct, it shows how to extend the analysis of soliton scattering by other point interactions on the line, interpreted as a degenerate graph.Comment: Sec. 2 revised; several misprints corrected; added references; 32 page

    An evaluation of the capability of data conversion of impression creep test

    Get PDF
    High temperature power plant components are now working far beyond their operative designed life. Establishing their in-service material properties has become a matter of significant concern for power generation companies. Advantages for the assessment of creep material properties may come from miniature specimen creep testing techniques, like impression creep testing method, which can be treated as a quasistatic non-destructive technique and requires a small volume of material that can be scooped from in-service critical components, and can produce reliable secondary creep data. This paper presents an overview of impression creep testing method to highlight the capability in determining the minimum creep strain rate data by use of conversion relationships that relates uniaxial creep test data and impression creep test data. Stepped-load and stepped-temperature impression creep tests are also briefly described. Furthermore, the paper presents some new impression creep test data and their correlation with uniaxial data, obtained from P91, P92 and ½CrMoV steels at different stresses and temperatures. The presented data, in terms of creep strain rate against the reference uniaxial stress, are useful for calibration of impression creep testing technique and provide further comparative results for the evaluation of the reliability of the method in determining secondary creep properties

    On the Asymptotic Dynamics of a Quantum System Composed by Heavy and Light Particles

    Full text link
    We consider a non relativistic quantum system consisting of KK heavy and NN light particles in dimension three, where each heavy particle interacts with the light ones via a two-body potential αV\alpha V. No interaction is assumed among particles of the same kind. Choosing an initial state in a product form and assuming α\alpha sufficiently small we characterize the asymptotic dynamics of the system in the limit of small mass ratio, with an explicit control of the error. In the case K=1 the result is extended to arbitrary α\alpha. The proof relies on a perturbative analysis and exploits a generalized version of the standard dispersive estimates for the Schr\"{o}dinger group. Exploiting the asymptotic formula, it is also outlined an application to the problem of the decoherence effect produced on a heavy particle by the interaction with the light ones.Comment: 38 page

    Controlling a resonant transmission across the δ\delta'-potential: the inverse problem

    Full text link
    Recently, the non-zero transmission of a quantum particle through the one-dimensional singular potential given in the form of the derivative of Dirac's delta function, λδ(x)\lambda \delta'(x) , with λR\lambda \in \R, being a potential strength constant, has been discussed by several authors. The transmission occurs at certain discrete values of λ\lambda forming a resonance set λnn=1{\lambda_n}_{n=1}^\infty. For λλnn=1\lambda \notin {\lambda_n}_{n=1}^\infty this potential has been shown to be a perfectly reflecting wall. However, this resonant transmission takes place only in the case when the regularization of the distribution δ(x)\delta'(x) is constructed in a specific way. Otherwise, the δ\delta'-potential is fully non-transparent. Moreover, when the transmission is non-zero, the structure of a resonant set depends on a regularizing sequence Δε(x)\Delta'_\varepsilon(x) that tends to δ(x)\delta'(x) in the sense of distributions as ε0\varepsilon \to 0. Therefore, from a practical point of view, it would be interesting to have an inverse solution, i.e. for a given λˉR\bar{\lambda} \in \R to construct such a regularizing sequence Δε(x)\Delta'_\varepsilon(x) that the δ\delta'-potential at this value is transparent. If such a procedure is possible, then this value λˉ\bar{\lambda} has to belong to a corresponding resonance set. The present paper is devoted to solving this problem and, as a result, the family of regularizing sequences is constructed by tuning adjustable parameters in the equations that provide a resonance transmission across the δ\delta'-potential.Comment: 21 pages, 4 figures. Corrections to the published version added; http://iopscience.iop.org/1751-8121/44/37/37530

    Experimental and numerical analysis of initial plasticity in P91 steel small punch creep samples

    Get PDF
    To date, the complex behaviour of small punch creep test (SPCT) specimens has not been completely understood, making the test hard to numerically model and the data difficult to interpret. This paper presents a novel numerical model able to generate results that match the experimental findings. For the first time, pre-strained uniaxial creep test data of a P91 steel at 600 °C have been implemented in a conveniently modified Liu and Murakami creep damage model in order to simulate the effects of the initial localised plasticity on the subsequent creep response of a small punch creep test specimen. Finite element (FE) results, in terms of creep displacement rate and time to failure, obtained by the modified Liu and Murakami model are in good agreement with experimental small punch creep test data. The rupture times obtained by the FE calculations which make use of the non-modified creep damage model are one order of magnitude shorter than those obtained by using the modified constitutive model. Although further investigation is needed, this novel approach has confirmed that the effects of initial localised plasticity, taking place in the early stages of small punch creep test, cannot be neglected. The new results, obtained by using the modified constitutive model, show a significant improvement with respect to those obtained by a state of the art creep damage constitutive model (the Liu and Murakami constitutive model) both in terms of minimum load-line displacement rate and time to rupture. The new modelling method will potentially lead to improved capability for SPCT data interpretatio

    An evaluation of the capability of data conversion of impression creep test

    Get PDF
    High temperature power plant components are now working far beyond their operative designed life. Establishing their in-service material properties has become a matter of significant concern for power generation companies. Advantages for the assessment of creep material properties may come from miniature specimen creep testing techniques, like impression creep testing method, which can be treated as a quasistatic non-destructive technique and requires a small volume of material that can be scooped from in-service critical components, and can produce reliable secondary creep data.This paper presents an overview of impression creep testing method to highlight the capability in determining the minimum creep strain rate data by use of conversion relationships that relates uniaxial creep test data and impression creep test data. Stepped-load and stepped-temperature impression creep tests are also briefly described. Furthermore, the paper presents some new impression creep test data and their correlation with uniaxial data, obtained from P91, P92 and ½CrMoV steels at different stresses and temperatures. The presented data, in terms of creep strain rate against the reference uniaxial stress, are useful for calibration of impression creep testing technique and provide further comparative results for the evaluation of the reliability of the method in determining secondary creep properties

    The role of hardness on condition monitoring and lifing for high temperature power plant structural risk management

    Get PDF
    In this work, the use of hardness data in a novel predictive lifing model is explored. This study provides for the first time large amounts of site hardness data acquired during successive outages on an ageing coal fired power plant and draws conclusions regarding interpretation of these data in accordance with current practice, which is included in a case study. A novel, phenomenological relationship between room temperature hardness and creep data, obtained by uniaxial creep and impression creep tests, has been found and used for an innovative lifing approach that includes hardness data in a creep damage model. The latter is discussed with a description of how it could be practically implemented and validated in-service

    A study on the evolution of the contact angle of small punch creep test of Ductile materials

    Get PDF
    The work discussed in the present paper reports a novel investigation of the applicability of Chakrabarty's theory, for membrane stretching of a circular blank over a rigid punch, to small punch creep test (SPCT). The Chakrabarty solution was compared with corresponding results obtained by numerical finite element (FE) analyses and experimental tests. The Liu and Murakami creep damage model was used in the FE analyses. The aim of the work is also to improve the understanding of the mechanism governing the deformation and the failure of the specimen and to verify the range of applicability of the CEN Code of Practice CWA 15627, which is based on Chakrabarty's theory. The effects of various parameters, such as the initial thickness of the specimen, the radius of the punch, the load magnitude, the friction coefficient and different plasticity constitutive models, on the variation of the contact angle, θ0, and the central displacement of the punch, Δ, were identified and correlated by fitting equations. The variation of θ0 with Δ, obtained from Chakrabarty's solution was compared with that obtained by FE analyses of the SPCT. When the initial thickness of the specimen increased and the radius of the punch decreased, the FE results, in terms of the variation of θ0 versus Δ, showed to differ from Chakrabarty's solution, therefore new ranges of applicability of the CEN Code of Practice CWA 15627 were determined
    corecore